skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zafarani, Reza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The spectral properties of traditional (dyadic) graphs, where an edge connects exactly two vertices, are widely studied in different applications. These spectral properties are closely connected to the structural properties of dyadic graphs. We generalize such connections and characterize higher-order networks by their spectral information. We first split the higher-order graphs by their “edge orders” into several uniform hypergraphs. For each uniform hypergraph, we extract the corresponding spectral information from the transition matrices of carefully designed random walks. From each spectrum, we compute the first few spectral moments and use all such spectral moments across different “edge orders” as the higher-order graph representation. We show that these moments not only clearly indicate the return probabilities of random walks but are also closely related to various higher-order network properties such as degree distribution and clustering coefficient. Extensive experiments show the utility of this new representation in various settings. For instance, graph classification on higher-order graphs shows that this representation significantly outperforms other techniques. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Network data has become widespread, larger, and more complex over the years. Traditional network data is dyadic, capturing the relations among pairs of entities. With the need to model interactions among more than two entities, significant research has focused on higher-order networks and ways to represent, analyze, and learn from them. There are two main directions to studying higher-order networks. One direction has focused on capturing higher-order patterns in traditional (dyadic) graphs by changing the basic unit of study from nodes to small frequently observed subgraphs, called motifs. As most existing network data comes in the form of pairwise dyadic relationships, studying higher-order structures within such graphs may uncover new insights. The second direction aims to directly model higher-order interactions using new and more complex representations such as simplicial complexes or hypergraphs. Some of these models have long been proposed, but improvements in computational power and the advent of new computational techniques have increased their popularity. Our goal in this paper is to provide a succinct yet comprehensive summary of the advanced higher-order network analysis techniques. We provide a systematic review of the foundations and algorithms, along with use cases and applications of higher-order networks in various scientific domains. 
    more » « less
  3. A robust system should perform well under random failures or targeted attacks, and networks have been widely used to model the underlying structure of complex systems such as communication, infrastructure, and transportation networks. Hence, network robustness becomes critical to understanding system robustness. In this paper, we propose a spectral measure for network robustness: the second spectral moment m2 of the network. Our results show that a smaller second spectral moment m2 indicates a more robust network. We demonstrate both theoretically and with extensive empirical studies that the second spectral moment can help (1) capture various traditional measures of network robustness; (2) assess the robustness of networks; (3) design networks with controlled robustness; and (4) study how complex networked systems (e.g., power systems) behave under cascading failures. 
    more » « less